Skip to content

Notes for Developing a Pipeline

Ref: 盘点我跳过的科研天坑,进坑就是半年白干

1. Data

  1. Basic statistics: min, max, mean, std, ...

  2. Approximate probability distribution and the method of normalization

  3. Data volume: is it enough? -> augmentation, cross-validation, ...

  4. Data quality: balanced or unbalanced? Noisy or not?

    -> data splitting (Are all classes included in training, val. and testing set?)

2. Finetuning

Grid search

3. Evaluation

3.1 Precision is not all

TODO:

数据采集不均衡的情况很常见。例如,很多的自动驾驶的数据集中,行人、自行车、卡车的数量加起来还没有小轿车多。这种情况下,用模型对交通参与物分类的精度作为衡量模型表现的标准,恐怕意义不大。这种情况下,应当先对不同类别样本的分类精度进行一致性检验,或者采用一些适用于不均衡数据的评估指标,例如Kappa系数,Matthews相关系数等。

3.2 Use Statistics to Compare Models

McNemar test for classifier

Student's T test for statistical significance (note the requirements)

ANOVA for evaluate the difference of two means

Bonferroni correction: to counteract the problem of multiple comparisons

Effect size: the significance level can be effected by the sample size

  • Cohen's d
  • Kolmogorov-Smirnov

Last update: June 16, 2023
Authors: Co1lin